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Abstract - -  The present paper develops a formulation of the boundary element method for the analysis of 
axisymmetric transient heat conduction problems. The axisymmetric time-dependent fundamental solution 
is obtained by directly integrating the three-dimensional one. Due to its complexity, series expansions have to 
be introduced in order to make possible the analytical evaluation of the time integrals that appear in the 
formulation. Several results of numerical analyses are presented, including problems with time-dependent 
boundary conditions, and they demonstrate the feasibility of using boundary elements in space and time to 

solve axisymmetric hea t conduction problems. 
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NOMENCLATURE 

temperature; 
time; 
flux; 
thermal conductivity; 
density; 
specific heat; 
thermal diffusivity; 
heat transfer coefficient; 
temperature of the surrounding medium; 
initial temperature; 
volume of the solid ; 
boundary surface of the solid; 
generating area of the solid; 
generating boundary contour of the 
solid; 
direction cosines of the outward normal n 
to boundary S; 
Cartesian coordinates of source point; 
Cartesian coordinates of reference point; 
cylindrical coordinates of source point; 
cylindrical coordinates of reference point ; 
interpolation functions; 
weighting factor; 
Jacobian; 
Kronecker delta; 
modified Bessel function of the first kind 
of order zero; 
modified Bessel function of the first kind 
of order one; 
exponential integral; 
incomplete gamma function; 
number of boundary nodes; 
number of cells; 
number of integration points in each cell; 
number of internal nodes; 
N + P .  

INTRODUCTION 

THE BOUNDARY element method has been attracting 

growing interest of engineers and mathematicians, as 
can be seen by the number of recently published books 
and conferences on the subject [1-9]. The main 
advantage of the method is the reduction by one of the 
dimensionality of the problem under consideration. 
Thus, considerable savings in the data input and 
computer CPU time required to run it can be achieved. 

For nonlinear and transient problems, this advan- 
tage is partially lost since an integration over the 
domain is at present used [10, 11] but the method still 
retains its accuracy and facility of dealing with infinite 
regions and problems with high gradients. Further- 
more, the cells employed on the domain discretization 
can be larger than usual finite elements and for 
transient problems, the use of fundamental solutions 
that are space- and time-dependents avoid the need of 
integrating step by step on time using a finite difference 
type scheme. 

The present paper develops a formulation of the 
method for axisymmetric transient heat conduction. 
The axisymmetric fundamental solution is obtained by 
directly integrating the three-dimensional one [12]. In 
order to perform the time integrals analytically, series 
expansions are introduced but in general the series 
converge very quickly and despite the complexity of 
the fundamental solution, the computational effort 
involved in not great. 

Several applications are discussed, including prob- 
lems with 'radiation' and time-dependent boundary 
conditions. The numerical results and the small com- 
puter CPU times reported confirm the validity of the 
formulation. 

BOUNDARY INTEGRAL EQUATION 

The governing equation for three-dimensional tran- 
sient heat conduction in a homogeneous, isotropic 
solid body, in the absence of heat generators inside the 
domain, is 

~T 
KV 2T= pc~[  in f~ (1) 

843 



844 L.C. WROBEL and C. A. BREBBIA 

with boundary  conditions of the following types 

T =  T on FI  (2a) 

0T 
q = - K ~ n  = t1 on r" 2 (2b) 

q = h(T-  T~) on F s. (2c) 

Equat ion (2c) represents the convection or ' radiat ion '  
boundary  condition. Also, initial condit ions of the type 

T =  T o in t)  (3) 

need to be defined at  t = 0. 
For  our  numerical solution, T will be approximated 

and we can minimize the error  thus introduced by 
weighting the governing equation and boundary  con- 
ditions by a new function T*. As the problem is time- 
dependent,  we shall also have to weight the equations 
with respect to time. This yields the following weighted 
residual statement 

pc-~f ) T d.O dt 

= ( r -  T)q* d F d t  
0 1 

- ( q  - ~ )  T *  d F  dt 
0 2 

- [ q  - h ( r -  r3] T* d r  dt (4) 
0 s 

where q* -- - K(Or*/On). 
Integrating by parts the Laplacian with respect to Xk 

g i v e s  

- K df~ dt 
o Oxk OXk 

/ " r  0T �9 
- I I p c ~ - T  d ~ d t  

,J o ,J n Ot 

;:r = ( r -  T)q* d F d t  
0 1 

+f:fr, qr*drdt+f:fr24 r*drdt 
+ h ( r -  r s ) r*  dFdt (5) 

0 3 

where k = 1, 2, 3 (xl = x, etc.) and Einstein's sum- 
mation convention is implied. Integrating by parts  
once more 

_ ~ ( '  OT * f : ; .  KV2T*Td"dt JoJPC-~f Td~dt 

= - Tq* d F  dt - T q *  d F  dt 
0 z + r 3  0 t 

+ q T* d F  dt 
0 t 

f + ~T* d F  dt 
0 2 

+ h ( r -  Ts)r*dFdt. (6) 
0 3 

Integrating by parts the time derivative finally gives 

f r o (  o KV2T * + pc-~f -]Td~dt  

f f f r  f f f r  
+ q* T d F d t  = T*qdFdt. 

0 o 

(7) 

The fundamental  solution to this equation, cor- 
responding to a concentrated heat source applied at a 
point  i is [13] 

1 I R2 1 
T* = [41zk(z - 0] 3/2 exp 4k(z- -  t) (8) 

where 

R = [(x - xi) 2 + (y - yi)2 + (z - zi)2] 1/2 

is the distance from the point  of applicat ion of the 
concentrated heat source to the point  under con- 
sideration. The fundamental  solution possesses the 
following properties 

0T* 
KV 2 T* + p c - -  = 0 in ~ for all t < z. (9) 

Ot 

fnTT* = T i t = z. (10) d.Q for 

In order to investigate the singularity that  occurs in 
the integrals in equation (7) at time t = z, we may 
subtract  to the upper limit of the integrals an arbi trar-  
ily small quantity e, to avoid ending the integrations 
exactly at  the peak of a Dirac delta function. Thus the 
first integral on the LHS is identically zero because of 
equation (9). Taking the limit as e --} 0 and accounting 
for condit ion (10), equation (7) yields 

- k  f f  f r q * T d F d t + [ f n T ' T d V t  o t=o (11) 

where k = K/pc. 
Equation (11) is valid for any point inside the 

domain  but  in order to obtain a boundary  integral 
equation we have to take point  i to the boundary.  On 
doing so, one must consider the nature of the singu- 
larity of the integral in q*, which has a discontinuity as 
i approaches the boundary.  This gives 

kff  T* q dF dt c iT~+~ o 
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k 

=--IK.]o j r lq*TdFdt+[ fnT*Td~]~=o (12) 

where the c~ coefficient is a function of the solid angle of 
the boundary at point i [2] and the integral in q* is 
evaluated in the Cauchy principal value sense. 

For axisymmetric problems, all quantities are inde- 
pendent of the circumferential location, thus one 
integration cart be performed in advance in equation 
(12). This is equivalent to using ring heat sources as 
fundamental solutions. Writing the three-dimensional 
solution (8) in cylindrical coordinates and integrating 
over a ring of radius r~ at the plane z~, we have 

1 [ r2+r,+,z 1 
T* [4~k(r - t)33/2exp 4k(z - t) 

.pr'c~176176176 
X o exPL 2 k ( z - t )  ] 

which gives [14] 

2z 
Z * -  

[4xk(z - t)] 3/2 

x exp ~ ( ~  - -t) " I~ L2k(z - t ) ]  

Note that as r~ ~ 0 this fundamental solution tends to 
the three-dimensional one. Differentiating expression 
(14) gives 

cOT* K 
q* = - K  

On 8 x / ~ [ k ( ,  - t)] ~/2 

x e x p [  rZ + r"7 + ( z -  2 ~ 

xltrloL2k(;-_ti]-"il'L2k(~_ 
+ (z - Z3Io k2k( ~ _ t) z,, . (15) 

The boundary integral equation (12) now becomes 

FIG. 1. Generating area and boundary contour of solid of 
revolution. 

T* qr dS dt c , T , + ~  o 

= --  q* TrdSdt  + T* TrdA (16) 
K o t=o 

where A and S are the projections of f~ and F, 
respectively, in the r+z semiplane (Fig. 1). 

NUMERICAL FORMULATION 

For the numerical solution of equation (16) the 
boundary is discretized into a series of elements over 
which the geometry, temperature and flux vary ac- 
cording to chosen interpolation functions. One also 
needs to assume a certain variation on time for T and q. 
As these functions vary slower than T* and q*, it is a 
reasonable approximation to assume that they are 
constant over small intervals of time and perform the 
time integrations stepwise. This assumption makes 
possible the analytical evaluation of the time integrals 
in (16). After an appropriate change of variables, the 
LHS integral becomes 

I T* dt = 2k~/(nd) lo(2ax)x- 1/2 e -~dx  (17) 

where 

rrl 
d = r 2 + r~ + (z - h) 2 ; a --- ~-  

(18) 

p. 375] 

lo(2ax ) = ~ (ax)2~ (19) 
n=O n!2 

the integral becomes 

ft2 1 ~ a 2~ T* dt = 2k ~/(rrd--------~ E=o ~.~ r(2n + �89 c). (20) 
t t  = " 

For the RHS time integral in (16), we have 

f,2 kdx/(rcd)K { tlq*dt = [rr,. + (z - zi)z, J 

j'= 
x lo(2ax)x I/2 e- x dx 

c 

-rlr,nffll(2ax)xl/2e-Xdx}. (21) 

The Bessel function 11 can be expanded as [15, 
p. 375] 

(ax)~+ ~ (22) 
ll(2ax) = .~on!2(n + 1) 

which gives for the integral 

d d 
x = 4 k ( t 2  - t )  C = 4 k ( t 2  - q )  

Expanding the Bessel function in series as [15, 
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,, q* dt = kdx/(rcd ) [rr,. + (z -- z~)z,.] 

oo a2n 
• .=~o_ F .  2 r(2n + i, c)  

o0 a2n+l  } 
- rir,.  ~ _------ F(2n + ~ , C )  . (23) 

.=onK(n + I) 

All the incomplete gamma functions that appear on 
the above series can be evaluated in terms of F(�89 C) by 
using the following recurrence relation [16, p. 942] 

F(n + 1,C) = nF(n,C) + C"e -c  (24) 

and for computational  purposes we can evaluate 
F(�89 C) using a rational approximation that takes into 
account its relation with the complementary error 
function [15, pp. 262 and 299] 

r(�89 C) = fin erfc(4C) 

= ~/n(0.3480242 - 0.0958798p 

+ 0"7478556p2)p e-C (25) 

1 
p =  

1 + 0.47047 ~/C 

with an accuracy that is sufficient for our  calculations. 
From (18) one notices that the value of the constant  

a varies between 0 (for r or  r~ = 0 or for d --* oo) and 0.5 
(for r = ri, z = zl). All the series that appear on 
expressions (20) and (23) converge very quickly for 
small values of a but  slowly as a ~ 0.5. In  fact, they do 
not  converge for a = 0.5, due to the singularity at 
r = r~, z = zv So, from the computational point of view, 
it is not convenient to use expansions (19) and (22) for 
values of a in the vicinity of a = 0.5. 

In order to overcome this problem, we can use 
asymptotic expansions of the Bessel functions that are 
valid for large values of their arguments. Thus, when- 
ever x is large we can write [15, p. 377]. 

e2,,,, [- o0 f l ( n )  1 ( 2 6 )  
Io(2ax ) = ~ [ 1  + ,=~1 n!(16ax)"~ 

eZ,,,, [- o~ f2(n) 1 (27) 
, l (2ax) = ~ [ 1  + ,~x n!(16ax)"~ 

fx(n) = (2n - 1) 2 (2n - 3)z...  1 (28) 

f2(n) = ( -  l y ( 4  - (2n - 1) z) 

x (4 - (2n - 3)2)... (4 - 1). 

The time integrals become then 

(29) 

f t~ T* dt 

tl 

4rck~/(ad)l I ~ f l(n)b" 1 El(B) + -- - - F ( -  n,B) (30) 
,=1 n!(16a)" 

f2 K t~ q* dt = 2~zkdx/(ad ) e-a[(r - rl)r, . + (z - zl)z,,] 

+ [rr,. + (z - z,)z,.] ~, f l (n)b"-~ F(1 - n,B) 
,=1 n!(16a)" 

f 2(n)b"- I 
- rlr,, ~ - -  F(I  - n.B) (31) 

,--'='1 n!(16a)" J 
where b = 1 - 2a and B = be.  The incomplete 
gamma functions can now be computed from F(0, B) 
by using the recurrence relation [15, p. 262] e,] 

r ( -  n, B) = - r(1 - n, B) - ~ -  (32) 

F(0,B) = El(B). (33) 

For  computat ional  purposes, the exponential in- 
tegral can be computed (with sufficient accuracy) using 
the following polynomial and rational approximations 
[15, p. 231] 

El(B ) = - 0.57721566 + 0.99999193B 

- 0.24991055B 2 + 0.05519968B 3 

- 0.00976004B 4 + 0.00107857B s - In B 

for 0 ~ < B ~ < I  (34) 

Ex(B ) = (B 4 + 8.57332874B a + 18.05901697B z 

+ 8.63476089B + 0.26777373)/ 

[(B 4 + 9.57332234B 3 + 25.63295614B 2 

+ 21.09965308B + 3.95849692)Be n] 

for 1 ~ B <  oo. 

When the constant  a ~ 0.5 but  x is small, we cannot  
use directly expansions (26) and (27). Alternatively, 
equation (17) may be written as 

,, r*  dt = ~ Io(2ax)x-1/2 e-X dx 

+ Io(2ax)x- 1/2 e-X dx (35) 
C' 

where 

f ; ' Io (2ax)x -1 /2e -Xdx  

a 23 

= ~ ~ [F(2n + �89 - F(2n + �89 C')] (36) 
n=0 �9 

and expansion (26) is now used to evaluate the second 
integral in (35). The same idea can be applied on 
calculating the flux time integral (21). 

The discretized form of the boundary  integral 
equation (16) is 

N N 
(H,j - 60c,) T j = ~ G,jQj - B, (37) 

j=x j=1 

where the Bt term accounts for the initial conditions 
and 
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= q* dtr dS; HU -K j t, 

= T*dtrdS. (38) 
Gij ~ J ,, 

Each space integral in (38) can be evaluated using a 
standard Gaussian quadrature, except the ones in 
which the element j contains the node i, for in these 
cases the integrals become singular. A careful in- 
vestigation on equation (30) shows that the singularity 
of G, is of the logarithmic type, thus integrable. 
Expanding the exponential integral, one can isolate the 
logarithmic term and integrate it analytically. All the 
remainder is non-singular and can be integrated by 
using a standard Gaussian quadrature. 

The H ,  terms contain a logarithmic plus a lib 
singularity. The first one is directly integrable but the 
second is only integrable in the Cauchy principal value 
sense. Expanding the first term of each series in (31) in 
order to isolate the logarithmic singularity, we can 
evaluate both singular integrals analytically and all the 
remainder, which is non-singular, using a standard 
Gaussian quadrature. The expressions found are ra- 
ther lengthy and are given explicitly in [17] for the case 
of constant and linear interpolation functions. 

Two different time-marching schemes can be em- 
ployed on the numerical solution of equation (16): the 
first treats each time step as a new problem and so, at 
the end of each step, temperature values at a sufficient 
number of internal points are calculated in order to be 
used as pseudo-initial values for the next step; in the 
other, the time integration process always starts at 
time t o and so, despite the increasing number of 
intermediate steps as the time progresses, temperature 
values at internal points do not need to be recomputed. 

Although demanding a domain integral the former 
scheme has the advantage that ifa constant time step is 
adopted, all matrices involved in equation (37) will 
also be constant throughout the analysis and so can be 
computed only once and stored. On the other hand, 
the latter scheme has the advantage that if T O satisfies 
Laplace's equation, the domain integral in (16) can be 
transformed into equivalent boundary integrals [17] 
and then a reduction of the dimensionality of the 
problem is effectively achieved. However, as the fun- 
damental solution is dependent on the actual value of 
time, the matrices that appear in (37) have to be 
recomputed as the time progresses. 

A comparison between the computer efficiency of 
both above-mentioned time-marching schemes car- 
ried out by the authors [18] showed that the first 
scheme is more economical than the second for general 
problems, although the second is more efficient when 
temperature values at only a few numbers of in- 
termediate time steps are required, and also for 
problems involving domains extending to infinity. As 
these are not the cases of the examples analysed here, 
the first scheme was employed in the present work. 

The domain is then discretized into cells and the 

integrals performed by using a numerical integration 
procedure, for instance, Hammer's quadrature rule. 
Assuming that the temperature values are computed 
directly at each integration point in the cells, the B i 
terms in (37) are of the form 

M L M L 

B, = ~ ~, T~r~wzJ,(Tt),=,, = ~, ~ Ba(T~)t=t,'(39) 
m = I  1 = 1  m = l l = l  

Alternatively, if we assume that the temperature 
inside each cell varies according to a certain in- 
terpolation function that should be of the same order 
as the one which prescribes the variation of tempera- 
ture over the boundary elements, we have 

V M L V 

B, = E ~ ~. T~r,w,J,7~(Tv),=,, = E B , v ( R . ) , = , , .  
v = l  m = l  1=1  v = l  

(4O) 

A more detailed discussion on the computation of the 
domain integral can be found in 1-17]. 

A P P L I C A T I O N S  

In order to show the numerical accuracy of the 
formulation developed in this paper, three different 
examples were analyzed, including a problem with 
time-dependent boundary conditions. Due to the 
symmetry with respect to the r-axis, only one half of the 
cross-section needed to be discretized in all problems 
studied. Symmetry is taken into account by a direct 
condensation process with integration over reflected 
elements, such that no discretization of the axis of 
symmetry is necessary. All the examples were studied 
using constant boundary elements with four Gaussian 
points and computing the domain integrals as in 
equation (39), using Hammer's quintic quadrature 
rule. 

SOLID CYLINDER WITH CONVECTION 

The first example analyzed was that of a solid 
cylinder at unit initial temperature, subjected to the 
following boundary conditions 

T = 0  at r =  a 

q = 2 T  at z =  +1. 

T 
1.0 
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0.4 

02  
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Ana l y t i ca l  

BEM.  

t = 0 025 

" t = 0 05  

t =0.10 

t = 0.15 

t =0 .25  

, t =0 .40  

0.25 0 .50  0.75 1.00 

FIG. 2. Temperature at z = __+ I. 

- r 
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, v F.E.M. 

~_: . . . .  

/ L1 

I I I. I ' : 
0.2 0.4 0 6 0.8 110 t 

FIG. 3. Temperature at internal points. FIG. 4. Temperature at the centre point of a prolate spheroid. 

The discretization adopted is shown in Fig. 3. The 
numerical values assumed for the cross-section were a 
= 1, I = 1 and for simplicity, the coefficients k and K 
were also assumed to be unity. 

Results are compared in Figs. 2 and 3 against an 
available analytical solution [13], showing good 
agreement. The analysis was performed with a time 
step At = 0.025 and took about 4 s of CPU time in an 
IBM 360/195 computer to converge to a steady- 

: state (20 time intervals). 

PROLATE SPHEROIDAL SOLID 

This example studies a prolate spheroid initially at 
zero temperature and subjected to a unit surface 
temperature at t = 0. A parametric representation of 
points on its surface, in the rz plane, may be written as 

r = L 1 cos~b 

z = L2 sin ~b 

where the ~ angle is indicated in Fig. 4. 
The discretization employed is shown in the figure 

and the numerical values assumed for this analysis 
were K = k = 1, L 2 = 2. Results for the centre point (r 
= z = 0) are compared in Fig. 4 against an analytical 
solution [19] and a finite element solution [20] 
obtained with parabolic three-dimensional isopara- 
metric elements. The finite element analysis was perfor- 

med with a At = 0.025 whereas the boundary element 
solution employed a At = 0.050. The total CPU time 
was 4.5 s, for 20 time steps. 

SPHERE WITH THERMAL SHOCK 

An alternative method of analysing transient pro- 
blems using boundary elements is in conjunction with 
Laplace transforms [21]. However, this method does 
not produce good results for problems with time- 
dependent boundary conditions, due to numerical 
problems in the inverse transformation process [22]. 
The step-by-step method shown in this paper does not 
present this drawback. 

To show the accuracy of the method for problems 
with time-dependent boundary conditions, a sphere 
subjected to thermal shocks was analysed. The discre- 
tization of the sphere is shown in Fig. 5, together with 
the variation with respect to time of the boundary 
temperature. It consists of two thermal shocks, one of 
which is imposed at t = 0, the other at time t o. 

Results are presented in Figs. 6-8 for different values 
of to and compared against analytical solutions [13]. 
The accuracy of the boundary element solutions is very 
good for all values of to. Each analysis took about 3 s of 
CPU computer-time to run. 

T 

T2:mo 
I 
I / 

I / ~  I' 

k'.. , . - ~ ,  T~ = so. : - - . r  
I / /  %,, / /  
I . /  ~ ./ It 
a c  _ _ _ ' Z  I 7 To=~ 

0 

I 
1 
I 
I 
I 
I ; t 

t o  

FIG. 5. Discretization and variation of boundary temperature on time for sphere. 
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T ,  T 

too.- ~ ~  100I  o ~  

80. 80 
r= 

60.. 60 .  

Analytical 

,o._ S ;  40 .  

2 0 "  20. 

0 ~ ' I I ' ~ : t o. I .. t I I 
011 02 0.3 0'.4 0.5 0.25 0.50 0.75 1.00 1.IS , t 

FIG. 6. Temperature at internal points for thermal shock at FIG. 8. Temperature at internal points for thermal shocks at 
t = 0 .  t = 0  and t =0.7. 

CONCLUSIONS 

The boundary  elements formulation for axisym- 
metric transient heat conduction as presented in this 
paper proved to be a powerful numerical tool for many 
practical problems, including problems with time- 
dependent boundary  conditions. Despite the fact that 
the influence coefficients on the system matrices are 
evaluated using series expansions, all the series that 
appear in the formulation converge very quickly and 
so the computing effort involved is not  great, as shown 
by the small computer CPU times required to run the 
examples. 

The.use of a fundamental  solution which is space- 
and Ume-dependent eliminates the need of integrating 
step-by-step on time using a finite difference-type 
scheme. But in order to compute the time integrals 
analytically, time-stepping is also necessary to obtain 
accurate results although the steps can be compara- 
tively large. The assumption of constant  variation on 
time for the variables, as was done in this paper, is not  
restrictive and higher order interpolation functions 
can be introduced. In  fact, the use of linear time 
interpolation functions still permits the analytical 

3" 

lO0. 

80 

60. 

40 

20 

0. 

r=O I I I 

0.1 0.2 0.3 0.4 0 5 

FIG. 7. Temperature at internal points for thermal shocks at 
t = 0 a n d t = 0 . 2 5 .  

HMT 24:5 ~ E 

evaluation of the time integrals and allows even larger 
time steps to be employed. Results on these develop- 
ments will be published in a future paper. 
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UNE FORMULATION DE LA METHODE DES ELEMENTS LIMITES POUR LA 
CONDUCTION THERMIQUE AXISYMETRIQUE El" VARIABLE 

R6sum6 - -  On d6veloppe la formulation de la m6thode des 616ments limites pour l'analyse des probl6mes de 
conduction thermique axisym6trique et variable. La solution fondamentale axisym6trique, d6pendante du 
temps, est obtenue par int6gration directe d'une solution tridimensionnelle. Du fait de la complexit6, les 
d6veloppements en s6rie sont introduits de fa~;on ~i faciliter 1'6valuation analytique des int6grales de temps qui 
apparaissent dans ia formulation. On pr6sente plusieurs r6sultats num6riques, r incluant des probl6mes 
avec des conditions aux limites d6pendant du temps, et il est montr6 la possibilit6 d'utiliser les 616ments 
limites dans l'espace et dans le temps pour r6soudre des probl6mes de conduction thermique axisym6triques. 

EINE FORMULIERUNG DER RANDELEMENTMETHODE FOR ACHSENSYMMETRISCHE 
INSTATION.~RE W.~RMELEITUNG 

Zusammenfassung - -  In der vorliegenden Arbeit wird eine Formulierung der Randelementmethode zur 
Analyse von achsensymmetrischen, instation/iren W/irmeleitproblemen entwickelt. Die achsensymmetrische 
zeitabh/ingige allgemeine L6sung wird durch direkte Integration der dreidimensionalen L6sung erhalten. 
Infoige ihrer Komplexit~t mugten Reihenentwicklungen eingefiihrt werden, um die analytische Berechnung 
der Zeitintegrale zu erm6glichen, die in der Formulierung auftreten. Mehrere Ergebnisse einer numerischen 
Analyse werden angegeben einschliel31ich von Problemen mit zeitabh/ingigen Randbedingungen. Sic 
demonstrieren die M6glichkeit, Randelemente in Raum und Zeit zu benutzen, um achsensymmetrische 

W/irmeleitprobleme zu 16sen. 

aPOPMYYII4POBKA METO~A FPAHHqHOFO ~JIEMEHTA ~JLq OCECHMMETPHqHblX 
HECTAUHOHAPHblX 3 A ~ A q  TEHJIOI-IPOBO~HOCTFI 

A u u o T a u m -  B HacToamefi pafoTe paapafaThiaaexca MeTOJI rpaHltqHoro 3YleMeHTa ~ a  anayiH3a 
oceCHMMeTpHqHblX necTaunouapnmx aaaaq TenaonpoBo~mocTn. OcecltMMeTpnqnoe dpyHilaMeHTaYibHOe 
pemeHHe, 3aBaca~ee OT BpeMeHH, noayqeao nyTeM npgMoro nHTerpnpoBaHnn TpexMepnofi 3allaqn. 
B nnay C~OmHOCTit no.rly~leHHOrO pemeHH~l 6bl~IH npliMeneHbl paaaoxenaa a pan, qTO nO3BOJ11~O 
ocymteCTBHTb aHaJInTnqeCKylO oIleHKy nnTerpaBoa,  3anncnmnx OT BpCMeHH. IlpeacTanaeHbl pe3yJll, TaTbl 
qHC.rleHHOFO anan~i3a, B TOM tinC.rle /LTI~I 3a~xaq c rpaHHqHbIMI4 yCJIOBHflMit, 3aBHC~URHMH OT BpeMeHH. 
PeayabTaT~I yKa3bIBalOT Ha BO3MOX(HOCTb ncnonbaoBanHa rpaHnqHblX 3JleMeHTOB B KOOpj11tHaTax H 

BpeMeHH aJI~l pemen~la oceCHMMeTpHqHhIX 3aAan TenJIOHpOBO21HOCTH. 


